Identification of the circadian transcriptome in adult mouse skeletal muscle.
نویسندگان
چکیده
Circadian rhythms are approximate 24-h behavioral and physiological cycles that function to prepare an organism for daily environmental changes. The basic clock mechanism is a network of transcriptional-translational feedback loops that drive rhythmic expression of genes over a 24-h period. The objectives of this study were to identify transcripts with a circadian pattern of expression in adult skeletal muscle and to determine the effect of the Clock mutation on gene expression. Expression profiling on muscle samples collected every 4 h for 48 h was performed. Using COSOPT, we identified a total of 215 transcripts as having a circadian pattern of expression. Real-time PCR results verified the circadian expression of the core clock genes, Bmal1, Per2, and Cry2. Annotation revealed cycling genes were involved in a range of biological processes including transcription, lipid metabolism, protein degradation, ion transport, and vesicular trafficking. The tissue specificity of the skeletal muscle circadian transcriptome was highlighted by the presence of known muscle-specific genes such as Myod1, Ucp3, Atrogin1 (Fbxo32), and Myh1 (myosin heavy chain IIX). Expression profiling was also performed on muscle from the Clock mutant mouse and sarcomeric genes such as actin and titin, and many mitochondrial genes were significantly downregulated in the muscle of Clock mutant mice. Defining the circadian transcriptome in adult skeletal muscle and identifying the significant alterations in gene expression that occur in muscle of the Clock mutant mouse provide the basis for understanding the role of circadian rhythms in the daily maintenance of skeletal muscle.
منابع مشابه
The Role of the Molecular Clock in Skeletal Muscle and What It Is Teaching Us About Muscle-Bone Crosstalk
PURPOSE OF REVIEW This review summarizes what has been learned about the interaction between skeletal muscle and bone from mouse models in which BMAL1, a core molecular clock protein has been deleted. Additionally, we highlight several genes which change following loss of BMAL1. The protein products from these genes are secreted from muscle and have a known effect on bone homeostasis. RECENT ...
متن کاملCircadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation.
Circadian rhythms of cell and organismal physiology are controlled by an autoregulatory transcription-translation feedback loop that regulates the expression of rhythmic genes in a tissue-specific manner. Recent studies have suggested that components of the circadian pacemaker, such as the Clock and Per2 gene products, regulate a wide variety of processes, including obesity, sensitization to co...
متن کاملThe Role of Clock Genes in Cardiometabolic Disease Working around the clock: circadian rhythms and skeletal muscle
Zhang X, Dube TJ, Esser KA. Working around the clock: circadian rhythms and skeletal muscle. J Appl Physiol 107: 1647–1654, 2009. First published August 20, 2009; doi:10.1152/japplphysiol.00725.2009.—The study of the circadian molecular clock in skeletal muscle is in the very early stages. Initial research has demonstrated the presence of the molecular clock in skeletal muscle and that skeletal...
متن کاملThe role of clock genes in cardiometabolic disease.
The study of the circadian molecular clock in skeletal muscle is in the very early stages. Initial research has demonstrated the presence of the molecular clock in skeletal muscle and that skeletal muscle of a clock-compromised mouse, Clock mutant, exhibits significant disruption in normal expression of many genes required for adult muscle structure and metabolism. In light of the growing assoc...
متن کاملIntrinsic muscle clock is necessary for musculoskeletal health.
KEY POINTS The endogenous molecular clock in skeletal muscle is necessary for maintenance of phenotype and function. Loss of Bmal1 solely from adult skeletal muscle (iMSBmal1(-/-) ) results in reductions in specific tension, increased oxidative fibre type and increased muscle fibrosis with no change in feeding or activity. Disruption of the molecular clock in adult skeletal muscle is sufficient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 31 1 شماره
صفحات -
تاریخ انتشار 2007